
ME 530 Homework # 2       Due September 28, 2020 
         Name_______________ 
 

1. Given the Green ‘s function in class determine and plot the three dimensional 
displacement distribution for a point force F= (1,1,1). 

 

 
2. In Mura, the Green’s function for half space is also given (Equation 15.11, p.95). 

Considering the Green’s function for half space determine the displacement distribution 
when a point load is applied at the surface in the direction F=(0,0,1). Make a 3D 
displacement plot in this case.  

 
3. In the paper by Tanaka and Mura attached, they give the external field for an 

inhomogeneity in the Appendix (Equations 42 and 43). Using these equations make a 
plot of the shear stress field at y=a. Do not derive the equations. 

 
 

4. We are interested in solving for the spherical inclusion stress field (inside the inclusion) 
when the eigen strain is  (1,0,0). Please determine the constrained strain tensor in this 
case. Assume poisson’s ratio is 0.3. Note that we did the (1,1,1) case in class. 
 



A Theory of Fatigue Crack Initiation at Inclusions 
K. TANAKA and T. MURA 

The dislocation dipole accumulation model for fatigue crack initiation previously proposed by the 
authors is extended to an analysis of the fatigue strength reduction due to inclusions in high strength 
alloys. The initiation of a fatigue crack is determined by an energy criterion under the assumption that 
the crack initiation takes place when the self strain energy of dislocation dipoles accumulated at the 
damaged part in the material reaches a critical value. Explicit formulae for the crack initiation criterion 
in several cases are derived as functions of the applied stress, the inclusion size, the slip band shape, 
and the shear moduli of the inclusion and matrix. The following three types of fatigue crack initiation 
at inclusions are considered: the slip-band crack emanating from a debonded inclusion, the inclusion 
cracking due to impinging of slip bands, and the slip-band crack emanating from an uncracked 
inclusion. The first mechanism was reported to be operative in high strength steels, while the last 
two mechanisms were reported in high strength aluminum alloys. The present theoretical results are 
in good agreement with the experimental data published for each case of fatigue crack initiation 
at inclusions. 

I. INTRODUCTION 
THE fatigue strength of high strength alloys is often re- 
duced by the presence of inclusions. Modes of fatigue crack 
initiation at inclusions depend on the matrix material, types 
of inclusions, and properties of the interface between inclu- 
sions and the matrix. A control of these metallurgical factors 
is important for alloy designers. 

Several microscopic observations have been conducted to 
clarify several micromechanisms of fatigue crack initiation. 
In high strength steels, the fatigue limit is much lower than 
the yield stress, and the fatigue strength is reduced by the 
presence of inclusions. 1-5 Lankford and KusenbergeP sum- 
marized a series of stages occurring in fatigue crack 
initiation at inclusions. The initial stage is the interface 
debonding of the inclusion from the matrix. Lankford 5 
found that this debonding takes place by the first tensile 
loading even at a stress level close to the fatigue limit. 
Cracks initiate at the interface with the matrix after this 
debonding. The major part of the crack initiation life is 
consumed after the debonding. The initiation of a fatigue 
crack in the matrix is expected to be caused through an 
ordinary slip mechanism. 3'4 The influence of the inclusion 
size on the fatigue limit of high strength steels was analyzed 
by Morrow. 6 He regarded the inclusions as notches or voids, 
and utilized the concept of the notch-fatigue strength re- 
duction factor to evaluate the strength reduction due to in- 
clusions. His analytical results agree fairly well with the 
experimental data reported by Cummings and others. 1,2 His 
analysis is basically macroscopic, and the microstructural 
effect on the crack initiation is included in terms of the 
correction factor by Peterson.7 

In an aluminum alloy, 2024-T4, on the other hand, Gross- 
kreutz and Shaw 8 observed that the interracial debonding 
takes place after a sufficient amount of cyclic slip defor- 
mation in the matrix. Morris and his coworkers 9-~2 have 
made extensive observations on crack initiation at inclusions 
in AI 2219-T851 alloys under maximum cyclic stresses 
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lower than the matrix yielding stress. They found that the 
inclusions were cracked along the laminated structure or 
debonded at the inclusion-matrix interface. The inclusion 
cracking of this type was theoretically analyzed by Chang 
and others 13 with the use of a dislocation pile-up model at an 
inclusion. Their analysis was based upon an assumption of 
dislocation accumulation by cyclic stressing. Chang's anal- 
ysis was later modified through rather ambiguous approxi- 
mations to give an agreement with the experimental data on 
a statistical distribution of inclusion crackings. 11 Another 
type of fatigue crack initiation at inclusions in 2024-T4 A1 
alloy was reported by Kung and Fine. 14 They found that a 
fatigue crack could be initiated along slip bands emanating 
from an inclusion, and such an inclusion was not necessarily 
accompanied by debonding. In their experiment, the max- 
imum applied stress was higher than the matrix yielding 
stress. This type of slip-band cracking will be influenced by 
the internal stress field due to the inclusion. Any theoretical 
analysis has not been reported. 

Recently, the present authors have proposed a dislocation 
dipole model for fatigue crack initiation along slip bands in 
polycrystalline metals. 15 A systematic accumulation of dis- 
location dipoles under cyclic loading was derived under the 
assumption of irreversible motion of dislocations. Based on 
an energy criterion, the analysis yielded a Coffin-Manson 
type law for crack initiation and a Petch type law for grain 
size dependency of the fatigue strength. 

In this paper, this dislocation dipole model is extended to 
an investigation on the fatigue strength reduction due to 
inclusions. For mathematical simplicity, the analysis is 

c a r r i e d  out for a cylindrical inclusion under anti-plane 
shear loading. 

II. FATIGUE CRACK INITIATION IN 
HOMOGENEOUS MEDIA 

In the present theory of fatigue crack initiation, the for- 
ward and reverse plastic flows within slip bands are caused 
by dislocations with different signs moving on two closely 
located layers. It is assumed that their movements are irre- 
versible. Based on this model, the monotonic build-up of 
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dislocation dipoles is systematically derived from the theory 
of continuously distributed dislocations. The number of 
stress cycles up to the initiation of a crack about one grain 
diameter in length is reached when the self strain energy of 
the accumulated dislocation dipoles reaches a critical value. 

Since its fundamental concept is applied here to in- 
homogeneous media containing inclusions, the theory on 
fatigue crack initiation in a homogeneous medium 15 is brief- 
ly outlined below. 

The applied shear stress cycle is shown in Figure 1, where 
rl is a maximum stress and r2 is a minimum stress. The slip 
deformation is localized within a surface grain in the case of 
low stress, long-life fatigue of polycrystalline metals such as 
low carbon steels. The localized slip band extended from 
x = - l to l is shown in Figure 2a. Points E and F are the 
grain boundary, where the dislocation motion is blocked. 
The first forward loading introduces the dislocation pile-up 
on layer I. The positive back stress (negative with respect to 
the loading stress) due to dislocations on layer I helps the 
negative pile-up of dislocations on layer II located very 
close to layer I during the following reverse loading. The 
back stress due to dislocations on layer II helps the further 
dislocation pile-up on layer I during the following loading. 
Successive reversals of stress, therefore, give the ratcheting 
accumulation of damage (dislocation dipoles). Although the 
macroscopic stress-strain hysteresis shows a saturated 
closed loop, the pile-up of dislocation dipoles increases 
monotonically by cyclic loading. 

The self energy of dislocations introduced in the first 
loading is 

Ul = (rl - k)27r12/2p,, [1] 

where/x is the shear modulus, and k is the frictional stress 
of dislocations. The increment of the self energy AU per 
half cycle has the same form in each load reversal and is 
given by substituting At (=  (r~ - r2)) and 2 k in places of 
rl and k in Eq. [1]. Then, we have 

AU = (At -- 2k)2~r12/21 ~ .  [2] 

or) ooT  
LU 
n-  

03 
0 

n-  
< I  
UJ =TZ 
o r )  

I 3 2 n - I  2 n + l  

2 4 z n  

Fig, 1 -  Applied shear stress pattern. 

Yo 
- -  F O R W A R D  S L I P  I 
- - -  R E V E R S E  S L I P  ~ 

l - - ~  .g u ~ i .  _ "1- -7"1  

-.9. "~ 

(o) lb) 

Fig. 2--Model for dislocation dipole accumulation. (a) Isolated slip 
bands. (b) Multiple slip bands. 

The total amount of the self energy stored after n cycles is 
2 n  

Ui = UI + 2n A U ,  [3] 
i=1 

where Ui is the increment of the self energy stored in the i ~ 
stage of stress reversal. For a long-life fatigue, the first term 
in the above equation is negligible compared with the sec- 
ond term. The life up to the crack initiation is defined as the 
number of stress cycles when the following energy condition 
is satisfied: 

2ncAU = 41W,, [4] 

where W, is the specific fracture energy for a unit area along 
the slip band. From Eqs. [2] and [4], we have the following 
life law: 

nc = 4 t x W , / ( A r  - 2k)2rd. [5] 

Since 1 is the half grain size, the above equation for Ar vs 
l is of the Petch type when a crack initiation life is fixed. It 
is also found that Eq. [5] is equivalent to the Coffin-Manson 
law when A~- is expressed in terms of the plastic strain 
amplitude Ay. 

When the slip band is not isolated but multiple slip bands 
occur and are constrained in an elliptical grain as shown in 
Figure 2b, the above formulation must be modified in 
the following way. 

When the range of the applied stress is high, the slip 
deformation is more uniform and the grain boundary tends 
to be a preferential site for fatigue crack initiation. This type 
of crack initiation is treated by use of the inclusion method 
of Eshelby. 17 The grain is assumed to be an elliptic cylinder 
embedded in the elastic matrix as shown in Figure 2b, 
where l and h are semi-major and semi-minor axes, re- 
spectively. Under the first forward loading, the uniform 
plastic strain Yl is introduced into the grain. All other grains 
surrounding this grain are also subject to an average plastic 
deformation and, therefore, Yl is the deviation of plastic 
strain from the average. This consideration is based on "the 
self-consistent method." y~ is proportional to the average 
strain. The internal stress r s caused by % is calculated from 
Eq. [40] (in Appendix), 

rl s = /z(2S2323 - 1)y~ = - t x h y ~ / ( h  + 1), [6] 

where the Eshelby tensor 52323 is I / 2 ( h  + l) .  The sum of the 
applied stress r~ and r s should be equal to the friction stress 
k. Therefore, we have 

V, = (h + l ) ( r ,  - k ) / i x h .  [71 

The dislocations introduced by % are located at the grain 
boundary as shown in Figure 2b. The strain energy due to 
these dislocations is (see Appendix) 

U~ = - r s v ] ~ r h l / 2  = (r~ - k )Zzr l (h  + l ) / 2 t x ,  [8] 

where Eqs. [6] and [7] are used. We can proceed with a 
similar calculation for opposite dislocation accumulation 
after a reversed loading. The amount of increase in strain 
energy due to the new boundary dislocations with the op- 
posite signs, AU~, is given by 

AUo = (At - 2k)27rl(h + l ) /21x  [91 

which is also valid for each following load reversal. If h 
approaches zero, Eq. [9] becomes identical to Eq. [2]. For 
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a circular grain, i .e. ,  h = l, we have 

AU~ = ( A t  - 2k) 2 ~12/lx. [10] 

The life up to crack initiation can be derived from the energy 
criterion as 

2ncAUc = 47rlWc, [11] 

where Wc is the specific fracture energy for a unit area of the 
grain boundary. By substituting Eq. [10] into [11], we have 

nc = 2 lxWa/ (Ar  - 2k)2l. [12] 

This result may be used for crack initiation along the grain 
boundary in a homogeneous medium. In order to investigate 
the inclusion effect, the theory must be modified as shown 
in subsequent sections. 

The foregoing analyses are carried out for the case of 
screw dislocation pile-ups under anti-plane shear loading. In 
ordinary push-pull or torsional fatigue, the applied stress can 
be in-plane shear and the dislocations involved for crack 
initiation are of the edge type. The calculation for those 
cases is similar and the final equations for the initiation life 
have the same functional form.15 

III. FATIGUE CRACK INITIATION 
AT INCLUSIONS 

Classification of  Fatigue Crack Initiation at Inclusions 

A circular cylindrical inclusion l~ embedded in the matrix 
is subjected to a uniform anti-plane shear stress, and the 
matrix and the inclusion are assumed to be isotropic with the 
shear moduli/x and /z ' ,  respectively. The coordinate axes 
0x, 0y are taken as shown in Figure 3, and the third coordi- 
nate is ON. The applied stress is perturbed by an inclusion 
because of the different shear moduli. The stress inside f~ 
and that immediately outside f~ are easily evaluated by the 
equivalent inclusion method of Eshelby. 17,19 The stress at an 
arbitrary external point can also easily be obtained if the 
stress field outside a corresponding void is known (see 
Appendix). Under the uniform shear stress 71 at infinity, the 
elastic stresses, 7~ and 7yN, are expressed in the complex 
form of 

7xN - -  i'ryN = -i71 + i71~a2/z 2, [13] 

where z = x + iy, a is the inclusion radius, and 

a = (/x' - /x)/(/x' + /x). [14] 

The stress values of 7yU at points A and B are 

(7yU)A = (1 -- a)71, (7yN) B = (1 + a)71. [15] 

The stress is maximum at points A and C for /z '  < /x and 
at points B and D for /z '  > /x. 

As seen in high strength steels, if the strength of the 
interface between matrix and inclusion is weak enough to 
break by the first loading without any accompanying plastic 
deformation, the condition of this debonding is given by 
the applied interface stress. Since the debonded inclusion 
behaves like a void, or a notch, the initial crack will start at 
A or C. The crack will propagate from the interface into 
the matrix in the very early stage of fatigue, as shown in 
Figure 3a, and the main part of the fatigue life will be spent 
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Fig. 3--Types of fatigue crack initiation at inclusions. (a) Slip bands 
emanating from a debonded inclusion (Type A). (b) Slip bands emanating 
from an inclusion (Type C). 

in this crack initiation in the matrix. This type of crack 
initiation is classified here as Type A. ,  

If the inclusions and the interface are strong enough not 
to break in the initial loading, the plastic flow is accumu- 
lated in the matrix grain after some time of cyclic loading. 
The motion of dislocations in the matrix will be blocked 
by inclusions. The accumulation of dislocations impinging 
on the inclusion will eventually result in the inclusion 
debonding or cracking. The inclusion debonding or cracking 
reported by Morris and his coworkers 9'1~ in A1 2219-T851 
alloy may be classified under this type. We call this type 
Type B. 

Sometimes, however, these inclusions are not debonded 
or cracked, but a crack initiates in the matrix from the 
inclusion interface. This crack initiation is found along a 
slip band emanating from the point of stress concentration 
as shown in Figure 3b. This type of fatigue crack initiation 
was observed by Kung and Fine 14 in A1 2024-T4 alloy. It 
is named Type C. 

Type A Crack Initiation f rom Inclusions 

Fatigue crack initiation from a completely debonded in-  
clusion can be treated like crack initiation from a void or 
a notch. The stress is maximum at A and C as shown in 
Figure 3a, and the elastic stress concentration factor is 
two. The slip bands started from A and C will be blocked at 
some points E and F which are located at the boundaries of 
the grains, or at a martensite bundle or packet in high 
strength steels. 3 

The dislocation dipole accumulation model is applied to 
AE or FC, where 1~ is assumed to be a void. Since the details 
of the analysis will be published somewhere else, 16 here we 
discuss only its outline. 

The slip bands caused by forward and reverse loadings 
are stopped at a boundary when the maximum stress 71 
and the stress range A7 satisfy the conditions: 71 > T* and 
A7 > 2r*,  where 

7" = (k/Tr) ('tr/2 + cos - l (a / c ) )  

c = [(a + l) z + a2]/2(a + l) [16] 

and I is the length of the slip bands. Under those conditions, 
the self energy Ul due to dislocations caused by the first 
loading is expressed as 

U, = r y r / 2  - kVZl/2 + 7ra2721/Ix, [17] 
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where ,/r is the sum of the displacements due to notch 
and slipbands, and ,/~ is the displacement caused by slip. 
They are 
, y r  = 2 , n . 8 , . r l ( 2 c  2 _ a2)/ix 

+ 2ka[3(c  2 - a2)1/2 _ 2al] / i . t  + ,Tgka2/~ 
Y~I = 4flr - a ( c  2 - a2) in 

+ 7r(c z - aZ) /Z] / t z  + 4 k a [ ( 1 / ~  
+ c o s - l a / c ) ( c  2 - a2) l/z + 2a In a / c  - a l]  

= 1 - k / 2 7 r  - k c o s - l ( a / c ) / q r r l  

1 fai t 2  I = ~ t2 _-a2)1/Eln 

t ( c 2 -  a2)1/2 + a(c2  - a2)1/2 dt .  
t (c2 a2)V 2 - -  a(c2 a2)1/2 [18] 

The increment of the self energy AU in each load reversal 
is obtained by substituting Az and 2k for rl and k in Eqs. 
[17] and [18]. By using this AU, we obtain the fatigue crack 
initiation condition from Eq. [4]. 

By denoting the stress range required for crack initiation 
at a given n, in the inclusion-free material as At0, which is 
calculated from [5], the reduction of the fatigue strength due 
to inclusions is obtained as a function of the inclusion size 
relative to the slip band length. The fatigue strength reduc- 
tion factor for the inclusion-containing material is defined as 

Ks = Ar [19] 
If a cyclic stress range (amplitude) A~- is given, the reduc- 

tion of the crack initiation life nc due to inclusions (relative 
to the crack initiation life n~ 0 in the inclusion-free material) 
is given by 

n J n c  o = A U o l A U ,  [20] 
where AU is the energy increment for a half-cycle in the 
material containing inclusions and AU0 is that the inclusion- 
free material. AU0 is calculated from [2]. 

The reduction of the fatigue strength Ar (= 1/KI)  
for a constant n~ is plotted in Figure 4 against the inclusion 
size a relative to the slip band length l, where Ar is 
taken as a parameter. The fatigue strength A~- is about equal 
to A~'0 for small values of a / I  and decreases with increas- 
ing inclusion size. For very large inclusions, Az/A~'o 
approaches one half, that is, the fatigue strength reduction 
factor equals the inverse of the elastic stress concentration 
factor K, = 2.16 The relation between A~',A~-0 and a l l  is 
almost independent of the crack initiation life n~, which is 
implicitly a function of Ar 

For several values of the applied stress ranges, the reduc- 
tion of the crack initiation life with a / 1  is also shown in 
Figure 4. The amount of reduction is larger for smaller stress 
ranges. This trend and its inclusion size dependency are 
in good agreement with the experimental data for SAE 
4340 steel reported by Stulen and others. 1 This fatigue 
strength reduction due to inclusions under a given life is 
also in accord with the data for the same steel reported by 
Cummings and others. 2 The higher fatigue strength reduc- 
tion reported for higher strength materials measured under 
a constant inclusion size can also be explained by the curves 
in Figure 4, because higher strength materials have smaller 
slip band length I. 
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Fig. 4--Reductions of fatigue strength and crack initiation life due to 
inclusions are plotted against a / l  for Type A. 

Type B Inclusion Cracking by Impinging  Slip Bands  

The hard inclusions in A1 alloys 8-11'14 will break along the 
interface before slip band cracking takes place if the inclu- 
sion size is not very small. This Type B inclusion cracking 
is solved by the use of the inclusion method of Eshelby. 

Figure 5 illustrates the model of an inclusion 12 within 
the slip band zone fl,.  The slip band zone is elliptic with 
semi-major axis l and semi-minor axis h. The inclusion is 
assumed to be much smaller than the slip band zone. By 
neglecting the inclusion at first, the plastic strain 3'1 in f~l is 
given by Eq. [7]. The stress perturbation due to the elastic 
inclusion 1~ is approximated by the internal stress caused by 
the eigenstrain -Yl in ~ in an infinite plate. 2~ The stress ~-( 
inside l'l is calculated as (see Appendix) 

= m z ' % l ( # '  + ~).  [21] 

The strain energy stored due to the presence of inclusion 
11 is 

F 

H 

BOUNDARY 
Fig. 5--Inclusion l~ in z o n e  ~')1 of multiple slip bands (Type B). 
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U, = r(y] rra2/2 

= IX '  [ h  + l \ 2 7 r a  2 

Ix,  + Ix - k 
[22] 

where Eqs. [7] and [21] are used. The above energy is the 
strain energy due to Orowan dislocation loops trapped at the 
inclusion interface as shown in Figure 6a. The interfacial 
stress is maximum at B and D in Figure 5. This maximum 
stress is obtained as 

(ryU)B = Ix'(2k + IXT,)/(IX' + IX) 

= Ix'[r,(h + l ) / h  
- k(l  - h ) / h ] / ( i x '  + IX) [23] 

where Eq. [7] is used in the derivation (see Appendix). 
Under the assumption that Orowan loops trapped at the 

inclusion interface are irreversible, the amount of incre- 
ment of the self strain energy AUI in each load reversal 
is obtained from Eq. [22], through the usual substitution, as 

IX' (h  + l~2 ~a 2 
AUI - (IX' + IX) \ - - - - ~ /  ~ (At - 2k)2. ~ [24] 

The Orowan loops with different signs are accumulated by 
the cyclic loading as shown in Figure 6b. The total amount 
of  the strain energy accumulated after n cycles is 
UI + 2nAU,.  The interfacial stress after n cycles is the 
same as in the first loading, and its maximum value is given 
by Eq. [23]. If the interface breaks through a stress criterion, 
the cracking should occur in the first loading. Since this 
situation is already treated as Type A in the preceding sec- 
tion, the energy criterion seems to be appropriate. The num- 
ber of cycles up to a crack initiation nc is calculated from 

2ncAUi = 47raW,, [25] 

where WI is the specific fracture energy for a unit interracial 
area. The substitution of Eq. [24] into [25] yields 

IX ' +_____IX [ h ~ 2 4IXWI 1 
[26] n c -  IX' ~ ( A ~ - - 2 k )  2a" 

When the width of the slip band zone h is smaller than l, the 
above equation becomes 

n~ = C W~/[(Ar - 2k) z IZa] 

C = 4IX(IX' + IX)h2/IX '. [27] 
If the plastic zone spreads over the whole circular grain, 
i .e . ,  h equals l, n~ is 

FORWARD S 
I - - R E V E R S E  SLIP I 

(a) (b) 

Fig. 6--Model  of accumulation of dislocation dipole loops at interface. 
(a) Orowan's dislocation loops. (b) Dipole dislocation loops. 

nc = (IX' + Ix) IX W1/[IX'(Ar - 2k)2a]. [28] 

The life law expressed by Eq. [27] is very similar to 
Chang's formula modified by Morris and James '1 except that 
the power of l in their equation is one, not two. They proved 
that his equation agreed with the experiments of inclusion 
cracking found in fatigue of A1 2219-T851 alloy by taking 
an appropriate value of coefficient C and also by multiplying 
with a factor depending on the grain size l . "  Although 
Chang did not clarify the coefficient C, the present analysis 
indicates that it is the function of the shear moduli of matrix 
and inclusion, and of the width of the slip band. 

It can be seen in Eq. [27] that the number of cycles up to 
the inclusion cracking is inversely proportional to the inclu- 
sion size. For materials containing very small inclusions, the 
fatigue crack starts at slip bands or grain boundaries before 
inclusions are cracked. Therefore, it can be concluded that 
the smaller number of cycles between those given by Eqs. 
[5] to [12] and [27] gives the actual crack initiation life. The 
small inclusion does not affect the fatigue life as reported by 
several investigators. 8'~4 

Type C Slip Band Crack Emanating from 
Uncracked Inclusion 

The stress is maximum at B and D shown in Figure 3b 
at the interface of an elastic inclusion harder than the matrix. 
The fatigue crack initiates at the slip band emanating from 
B and spreading along PBQ. The stress distribution of ryN 
along PBQ is obtained by substituting z = x + ia into 
Eq. [13] as 

~'yN = TI "~- z, aa2(a 2 - x2)/(a 2 + x2) 2, [29] 

where r, is the applied stress at infinity. If the inclusion is 
surrounded by a uniform plastic strain Yl in the matrix, the 
misfit stress is superimposed on [29]. Then, the total stress 
along PBQ becomes (see Appendix) 

ryN = k + [(IX' - Ix)k + 2ix'(r, - k)]a2(a 2 - -  X2)/ 
(a 2 + x2) 2 (IX + IX'). [30] 

The maximum stress concentration at B is achieved when 
the inclusion is rigid, i .e . ,  IX' = ~. 

To solve the slip-band crack initiation, the problem of 
dislocation pile-up along PBQ is to be solved. Since the 
exact solution has not yet been solved, it will be approxi- 
mated by the problem of dislocation pile-up under the stress 
distribution of Eq. [29] or [30] in a homogeneous, infinite 
plane. The following analysis is carried out for the case of 
a rigid inclusion where the maximum reduction of the 
fatigue strength is expected. 

First, the slip-band cracking in an elastic matrix will be 
given. The equilibrium equation of dislocations with density 
D,(x) under the initial loading r, is expressed as 2' 

~ (x)  + ~l(X) - k = 0 [31] 

where 

L .gl(X) = ( i x / 2 ~ )  O l ( X ' ) & ' / ( x  - x ) ,  ~l(X) 
l 

= rl + rlaZ(a 2 - x2)/(a 2 + x2) 2. [32] 

The dislocation density D,(x)  is solved under the condition 
of unbounded density at x = -+l as 21 
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Dl(X) --- 

where 

2 1 /_ (12 _ x'2)1/2 ~ ( x ' )  x'- k dx '  
7/'/.I, (12 - - - X 2 )  1/2 I X - -  

2florl x 
Ix (12- x2),2 

+ 2r_2 a3x(3a 2 + 212 + x 2) (12 - x2)V2 
Ix (a 2 + 12)3/2 (a 2 + x2)2 [33] 

flo = 1 - k / r l  + a3/ (a  2 + /2) 3/2 . [34] 

The dislocations are blocked at P and Q when/30 is positive, 
with which the present analysis is concerned. The opening 
displacement c, bl(x) caused by the dislocation density 
Dl(X) is 

~bl(X) ----- D1 ( x ' ) d x '  

= 2f1071(t 2 - x2)I/2/IX + 2rl[aa/(a 2 + x2)] 
[(12 _ x2) l ( l  2 + a2)]3/2/ix. [35] 

The self strain energy Ut due to dislocations is derived by 
using Eqs. [31] and [35] as follows: 

Ul = - (1/2)1~ "~l (x)61 (x)dx 

=( Tr /2ix )('rl--k ){/3o,rll2 + 2"rla2[1 --a(312 + 2a 2) 
/2(12 + a2)3/2]}+ ( zr / ix )/3or2a 2 

 9 [1-a/12+a2)Vz]+(Ir/ix)r2a 5 
 9 [(4a4+ZaZ12+14)/4a3(12+a2) 1/2-1]/(12+a2) 3/2. [36] 

The increment of strain energy AU is obtained by substi- 
tuting Ar and 2k for rl and k in the above equation. The 
energy criterion for fatigue crack initiation along the slip 
band is given by Eq. [4]. The reduction of fatigue strength 
at a fixed crack initiation life and the reduction of crack 
initiation life under a fixed value of applied stress amplitude 
are calculated similarly as Type A cracking. Figure 7 indi- 
cates the variations of A r / A r o  and nc/nco with the inclusion 

size a relative to the grain size I. Both the fatigue strength 
and the crack initiation life are about the same as the 
inclusion-free material for small inclusion sizes, and tend to 
decrease with inclusion size. The combined effect of inclu- 
sion size and grain size on the fatigue strength agrees with 
the report by Kung and Fine 14 for A1 alloys. 

The analysis is easily carded out for the case of a plastic 
matrix by using the stress distribution of Eq. [30]. The strain 
energy U1 introduced by the initial loading Zl is 

UI = ( r / Ix ) ( ' r l  - k/2)a212(2a 2 + 12)/(a 2, + 12)2. [37] 

The reduction of the crack initiation life by inclusions is 
shown in Figure 8 for three cases of the applied stress At.  
When the inclusion size becomes small, the crack initiation 
life through the present mechanism is longer than that 
through the slip-band cracking operating in inclusion-free 
materials. Therefore, the latter mechanism is responsible for 
actual initiation of a fatigue crack. 

IV. CONCLUSIONS 
Based on the inclusion strength relative to the matrix, the 

types of fatigue crack initiation at inclusions in high strength 
alloys can be classified into three: the slip-band crack ema- 
nating from a debonded inclusion, inclusion cracking (or 
debonding) by impinging slip hands, and the slip-band crack 
emanating from an untracked inclusion. The crack initiation 
of the first type is operative in high strength steels; those of 
the latter two types are responsible for fatigue in high 
strength aluminum alloys. A fatigue crack initiation crite- 
rion is postulated in which a critical value of the accumu- 
lated self strain energy is reached due to dislocation dipole 
accumulation. 

Fatigue crack initiation from a completely cracked inclu- 
sion is simulated by slip-band crack initiation from a notch. 

The inclusion cracking caused by multiple slip bands 
impinging upon the inclusion is solved with the use of the 
inclusion method of Eshelby. The fatigue damage is accu- 
mulated in the form of Orowan loops of dislocation dipoles 
trapped at the interface between an inclusion and a matrix. 
The fatigue life is determined as the time when the strain 

I i \ ~ \  ' ~'~\ A*['/AT O 
V\!, "%. 

/ '\ \ \  1.5 0 .5 , \  \ \\ 
' \  \ \ \ z ~ T / 2 k =  

' \  .~ 
. \  \ ~.2_... nc/nco 

~. 1.5 ~.......~ ~ 
- -  

I I 0 01.5 [ [I. 5 2 
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Fig. 7 -  Reduction of fatigue strength and crack initiation life by inclu- 
sions in an elastic matrix (Type C). 
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Fig. 8 - -  Reduction of fatigue crack initiation life by inclusions in a plastic 
matrix (Type C). 
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energy of accumulated dislocation dipoles reaches a criti- 
cal value. 

The quantitative relations derived by the present theory 
explain the reduction of the fatigue strength due to inclu- 
sions at a given crack initiation life, and the reduction of the 
crack initiation life at a given constant range of the applied 
stress. These reductions depend on the inclusion size and 
properties of inclusions and matrices. The theoretical results 
are, at least qualitatively, in good agreement with experi- 
mental data reported previously. A quantitative comparison 
between the theory and the experiments will be conducted in 
the future. 

APPENDIX 
Stress Field and Energy of  Ellipsoidal Inclusion 

under Anti-Plane Shear 
An isotropic ellipsoidal inclusion ~ with the shear modu- 

lus /z' is embedded in an isotropic matrix with the shear 
modulus /z. Let the inclusion have an e igenstra in  
eyu = ye/2 and the material he subjected to the applied 
stress ~'y~ = z at infinity. The stress inside f~ can be solved 
by the equivalent inclusion method proposed by Eshelby. 17 
The eigenstrain e~N for an equivalent inclusion is deter- 
mined by 

+ ~y'~ = 2 ~ '  (C~ + 2s2323 ~yN - y~/2) 
= 2~[,/,[~;N ~- (252323 - -  1)E;N] ,  [38]  

where $2323 is Eshelby tensor and ~N = z/2/z, and ~yN is the 
perturbation component of the stress inside fL From 
Eq. [38], we have 

Ey N = - -  ([J~' - -  I.~)E;N - -  ix 'yp/2]/[tx + 2(/x' - /x)Sz3z3] 
~U = (1 - 282323)[(/.t' - /.t)T - t.t'l.t')/p]l 

[/x + 2(/x' - /x)$2323]. [39] 
When ~" is absent, e]u and ~N become 

e,;, = ~ ' ~ / 2 [ ~  + 2(/x' - ].t)$2323 ] 

~N = --(1 -- 2S2323)lx'~yp/[lx + 2(ix'  - /x)$2323]. [401 
The strain energy due to eigenstrain 7p isiS 

U = --~'fN % 0 / 2 .  [41] 

When an elastic inclusion is embedded in the plastic 
matrix with uniform plastic strain y~, the stress and the 
energy can be calculated by substituting yp = -y~ into the 
above equations, z~ 

Eshelby gave the formulae to evaluate the stress field 
outside an inclusion. Since his formulae are rather complex, 

( o l  (b) 

A I 
I O'ij + O'ii 

I!, 
Fig. 9--Stress field of material with inclusion. 

we use an alternate method to evaluate the external field by 
using the knowledge of the stress field outside a void with 
identical dimensions. As illustrated in Figure 9, the stress 
field of a general ellipsoidal inclusion (a) is equal to the sum 
of two stress fields: the stress field (b) for a void with an 
identical shape under remote applied stress -o-ij z., and the 
uniform stress field (c) of o'i~ + o-~, where cr A is the applied 
stress and -0"~ is the stress disturbance within fL The 
equivalency of the stress boundary condition is obvious and 
that of displacement can be proved very easily. 

The complex form of the stresses z v and ry~ for a circular 
cylindrical void under the remote stress --Z~N can be solved 
with the use of the complex function 16 as 

~.v _ i 7y~ = i rfN(1 + aZ/z 2) [42] 

wherez = x + iy and Tylu is given by the second of Eq. [39]. 
By superposing the uniform stress r + Zy~N, we have the 
total stress: 

TxN --i~'yN = --iZ + i [(/X'-/-t) ~'--kr 't.typ]aZ/(~'+P.,)Z 2 
[431 

where $2323 =  88 is used. 
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