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elements. The homogenized behavior of the polycrystalline material is achieved through a Taylor
[23] approximation which enforces identical strain increments (rates) in each material at the integra-
tion point. The resulting (not necessarily equilibrium) stresses are averaged. This approach creates
a simple reduced, multi-scale model. A single finite element on the scale of centimeters can represent
a polycrystal with a length-scale on the order of microns.

To facilitate the various types of simulations anticipated to use the CP material model, the
input of properties is separated into three parts: (1) the crystal elastic and flow properties i.e.,
a crystal type is defined and identified by an integer value, (2) the initial lattice orientations
relative to the model (global system), and (3) other values including the thermal expansion
coefficient, mass density, local (iterative) solver/parameters in the CP routines, etc. The end
result in each case is a named material in the WARP3D scheme for assignment of material
information to finite elements. Many such named materials may be defined as required to meet
the complexity of representing the construction of a component. Materials other than the CP
model available in WARP3D may be defined and associated with other finite elements in the
mesh. The options to define a material for association with finite elements are summarized
briefly here to illustrate the modeling capabilities with details provided later in this section.

e One or more crystals numbered 1, 2, 3, ... are defined. Provided information includes the lattice
structure (fce, bee, hepl8, single ... ), type of elasticity, selection of the hardening model to couple
shear stress to slip strain rates and values of associated parameters.

e One or more named materials, e.g., AlLi2099, Gr91, Ti, ... is defined each making reference to a sin-
gle crystal (by number) and having a single orientation. This approach works well when material
specification for a simulation model requires only a few crystals and/or orientations. Input for the
named material includes the crystal number, one set of (3) orientation angles, thermal properties,
mass density, algorithms/tolerances for internal CP computations. Each named material may be
then associated with any number of finite elements via the usual input commands employed for
all other material models in WARP3D (see Section 2.3), e.g., elements 2000-10000 type 13disop
nonlinear material Gr91 bbar center_output ...

e The next approach proves more suitable for models where only a few crystals but many different
orientations are needed. Each finite element is assigned a single crystal and a single lattice orientation.
The named material now provides the crystal number but the 3 orientation angles are replaced by
the name of a flat (text) file; this file lists finite element numbers and the three Euler angles (one
line per element).

e In the most general scheme, polycrystal homogenization via the Taylor approximation is achieved
through a flat text file with each line containing: an element number, a crystal number and 3 Euler
angles. Each line thus associates a crystal number and orientation angles with an element. Multiple
lines may be defined for an element listing different (or same) crystal numbers and angles as needed
to represent material properties. The number of lines (crystals) per element and the file name are
specified in properties of the named material. This approach provides considerable flexibility to define
complex and spatially varying material properties throughout the model.

This section continues with a brief summary of key features of the CP formulation within the
WARP3D framework for implicit solutions including large rotations and finite strains. The CP
model formulation draws heavily on the concepts described in [1, 14] and in the new work by
T. Truster (publications in progress).

3.12.1 Kinematics

This section summarizes key features of the kinematics for the Green-Naghdi objective stress
rate adopted as the overall framework for large-rotations and finite-strains in WARP3D. The
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I+e)R~=R
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Reference Unrotated intermediate Current

‘ g9 '

Crystallographic Lattice

Figure 3.12.1: Coordinate systems for the crystal plasticity kinematic framework. Integration of the
objective stress rate occurs in the unrotated (intermediate) configuration. The kinematics of crystal
plasticity are defined in the lattice coordinates.

material stress rate differs in various objective rate theories that include plastic vorticity, i.e.,
a material model designed for a Jaumann rate becomes kinematically incorrect in a solution
framework that uses the Green-Naghdi rate and vice-versa. An interesting observation emerges
from a rigorous derivation: stress integration for crystal plasticity requires either the macroscale,
total vorticity or the microscale plastic vorticity, but does not require both [17, 18].

Figure 3.12.1 shows the kinematic framework. Stress integration with the Green-Naghdi
rate takes place in the unrotated intermediate or corotational frame — the remainder of the
configurations are standard for crystal plasticity kinematics. The corotational frame follows
from a polar decomposition of the total deformation gradient F into a rotation and a stretch:

F=RU. (3.12.1)

A multiplicative decomposition of the deformation gradient yields F = F¢FP = V¢RRPUP,
which decomposes both the elastic and plastic deformations into an associated stretch and
rotation. For the moment, neglect the elastic stretch V¢, then

F = R°R"U",

The small-strain nature of metal elasticity justifies this assumption. On comparing this expres-
sion to the polar decomposition of the total deformation gradient in Eq. 3.12.1, we have:

R=NHR"R"

After substituting and rearranging F = RUP. The elastic stretch is now re-introduced as a
small deviation from the identity tensor such that V¢ = I + . The final decomposition of the
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deformation gradient becomes:
F=(I+¢e)RU?

The top part of Fig. 3.12.1 shows the three coordinate systems defined by this decomposition
of the deformation gradient.

After eliminating quadratic terms in € and €, the spatial velocity gradient becomes:
L=FF ! =RR” + ¢+ RR7e — eRR” + RFR” + eRFRT — RI'Re.

In this equation I = FPFP~! defines a constitutive tensor; kinematically, this is the plastic
velocity gradient pulled back to the corotational, intermediate frame. The symmetric and skew
parts of this expression are:

D=-(L+L7) =¢é+eQ-Qe+Rd'R” +eRWR’ - RWRe (3.12.2)

1
2

W = - (L-LT) = @ + RW’R” + eRd’R” - Rd’R7e. (3.12.3)

DN =

Here, d’ is the symmetric part of I', WP is the skew part, and Q = RR” denotes the total
spin. The skew part of Iig (the plastic vorticity W”) is not equal, in general, to the plastic spin
RPRPT. There is no kinematic reason to neglect either the spin or the vorticity. To make Eq.
3.12.2 into a stress rate, we adopt the usual assumption of small elastic strains and apply the
elasticity tensor C such that C: e = o:

C:D=6+0Q-Q0+C: (RH‘”RT> + oRW'RT - R R o (3.12.4)

&=C: (D - RE"RT> — oR%*RT + R?RT¢ = & + o2 — Qo (3.12.5)

This & is the Green-Naghdi objective stress rate. The material stress rate for a computa-
tional framework using the Green-Naghdi rate becomes:

e (D —RA’R” — eRW*RT + RWPRTE) .

In the absence of plastic spin (W”), the stress rate becomes the usual rate form for conventional
plasticity models (discussed in Chapter 1). As observed above, the Green-Naghdi rate has a
correction term to include effects of plastic spin:

" = C: (—eRW’R! + Rw"R7¢).

The Green-Naghdi rate does not require the macroscopic vorticity W but does require the
microscopic plastic vorticity WP. This result holds after effects of lattice evolution are included
in the plastic constitutive tensor I’ (see below).

With this choice of stress rate, the stress integration simplifies considerably once stated in
the corotational frame. A pull-back of Eq. 3.12.5 to the corotational frame yields:

P P (d = a“’) + RW'RTt — tRW'R . (3.12.6)
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Material models in WARP3D integrate this rate of unrotated Cauchy stress t = R7oR as
a function of d, the unrotated rate of deformation. At this point, the macroscale rotational re-
sponse uncouples completely from the microscale lattice rotations — only the global rotation R
appears. In one advantage of this framework, the elasticity tensor Cg, may have the appropriate
form of an anisotropic tensor for the crystal system, rotated from the initial lattice frame to
the reference frame. WARP3D handles all the rotations required for the elasticity tensor auto-
matically. The user provides the appropriate anisotropic elasticity tensor in the crystallographic
frame. The code will provide the constant rotation into the lattice frame as well as the rotation
into the intermediate configuration, which changes with time. By enabling this definition of a
constant elasticity tensor in the corotational frame, the total material rotation then updates the
anisotropic elastic constants of a crystal. For small elastic stretches, this approach is equivalent
to elasticity models derived from a hyperelastic potential.

With Eq. 3.12.6 taken to update stresses at a material (integration) point in a finite element,
the constitutive model must then compute the plastic deformation I'. For crystal plasticity, the
common kinematic assumption is an additive decomposition of plastic shear deformations in a
lattice frame [4]:

Nslip

P=3 40 (B<S> ® ﬁ“)) (3.12.7)
5=1

where b®®) and n®) denote collections of slip-system directions and normals in the lattice frame
and 4% is the slip rate along each slip system. The geometry of the crystal system, for example
face centered cubic (FCC), defines these slip systems in the crystallographic frame and a rigid
rotation g, calculated from the initial grain orientations, defines the rotation between the
lattice frame and the crystallographic frame. Finally, as Fig. 3.12.1 indicates, the model must
transform this deformation tensor in the lattice frame into the unrotated frame to specify the
plastic deformation in the corotational coordinates. The rotation defining this transformation
is R?. The kinematics of macroscale deformation do not define this plastic rotation. Here, we
define R” as part of the constitutive response of the material. That is, the plastic rotation is
part of the micro-constitutive response, not the global kinematics. This plastic rotation does
not affect the elasticity tensor, only the plastic rate 17. This approximation appears acceptable
for moderate plastic strains [8], where the elastic response of the material does not depend
strongly on the plastic deformation.

From these definitions, the symmetric and skew parts of plastic deformation are:
Nslip

F=3 49 (Rme(s>Rp>
s=1

Nslip

WP = Z 4/(5) (Rqu(S)RP>

s=1
with m(®) = sym [B(S) ® fl(s)] and q'*) = skew [B(S) ® ﬁ<5)}.

The CP model adopts a general constitutive framework for the slip rates %(8) on each
system as a function of the current applied stress o and other factors such as temperature and
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microstructural state. Similarly, the hardening variables follow particular evolution equations
depending on the user-selected constitutive model available as CP options (see subsequent
sections). The generic form of the evolution equations is given by:

5(8) = 4(6) (T<s>, £ 41 ,,) (3.12.8)
£=£(t.6dv) L)

where
A8 — ¢ . (RPTrh(s)Rp) (3.12.10)

is the resolved shear stress on the slip system, £ is a set of hardening variables, and d is the
unrotated rate of deformation defined previously. These three fields are treated in an implicit
fashion within the stress update algorithm — a coupled system of nonlinear equations is solved
at an integration point for the current (global) estimate of the solution at n + 1. Additionally,
the model accommodates other parameters and field dependencies but treated in an explicit
manner; these variables are denoted by v. An example of such a field is the Nye tensor a
that drives features to approximate size effects in the Mechanical Threshold Stress (MTS)
constitutive model.

The selection of a hardening type controls both the slip rate and hardening relationships.
Options exist for both isotropic hardening and anisotropic hardening of the slip system resis-
tances, and flow rules may have power-law or exponential form. Later sections describe the
specific forms now available; the user can also implement their own models within the general
framework.

Finally, define the rate of plastic rotation:

R? = WPRP. (3.12.11)

Kinematically, this form is not rigorously correct, but it does approximate closely the ex-
perimentally observed texture evolution in a variety of situations (see Section 5.1 in [11],
[12, 14, 19]). Substitution of the macroscopic vorticity via Eq. 3.12.3 eliminates the plastic
vorticity from the above equation, thus making the lattice evolution dependent only on the
macroscopic vorticity and the symmetric part of the microscopic plastic deformation. In the
presence of lattice rotations, the formulation then continues to require only one of (1) the
macroscale, total vorticity or (2) the microscale, plastic vorticity.

3.12.2 Generalized Implicit Material Update Algorithm

A backward Euler integration of Eq. 3.12.6 defines the stress update procedure. To reduce
computational effort an explicit, exponential integration of Eq. 3.12.11 provides the plastic
rotation update. The resulting implicit equations are:

0= R1 = tn+] - E(tn+1, En+1, Adn+1; Vn) (31212)
=tnt1 — [tn +1 (tn+1,&nv1, Adpg1;vy) At]
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