Finite element simulation of single crystal and polycrystalline Haynes 230 specimens

P.G. Luccarelli¹, G.J. Pataky², H. Sehitoglu³, S. Foletti⁴

¹Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, 20136 Milan, Italy
²Department of Mechanical Engineering, Clemson University, 29634 Clemson, SC, USA
³Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street, 61801 Urbana, IL, USA

1. Introduction

The analysis of the effective plastic behavior in polycrystalline materials is described by the Finite Element (FE) method. The microstructure of the polycrystalline material is used to predict the mechanical behavior. The Crystal Plasticity (CP) model is used to represent the behavior of individual grains within a polycrystalline aggregate. The CP model accounts for the kinematics of the lattice deformation and a constitutive relation for the slip system response, which is able to link shear strain rates and stresses to sliding on slip planes (Healy et al., 2015). The investigation of CP finite element modeling is well pursued in Barbe et al. (2001a, 2001b), Musienko et al. (2007) where the main objectives are the study of the micro scale level of a random generated polycrystal (Barbe et al., 2001a, 2001b) and the representative response at the macro scale (Musienko et al., 2007). Further analysis is focused on showing the micro scale the discontinuity between grains in terms of stresses and strains.

In the current paper, we combine modeling efforts with experimental observations in order to investigate the material behavior and the parameters governing the FE models. By means of Digital Image Correlation (DIC) techniques, single crystal and polycrystalline specimens were analyzed for their overall response (in terms of stress-strain curves) and strain localizations across grains and grain boundaries. The results were used as a feedback to calibrate the constitutive model. The material studied is the Nickel-based superalloy Haynes 230, an alloy that, due to its high strength and good oxidation resistance, is being used in afterburner parts in current gas turbine engines (Lu et al., 2005). Using the crystallographic orientations of the single crystal specimens and the Electron Backscatter Diffraction (EBSD) map of a polycrystalline specimen, the behavior of the material was modeled by means of a crystal plasticity FE code. The analysis
will compare experiments and simulations in order to evaluate the agreement between the two results. Further modeling efforts introducing carbides in the polycrystalline matrix, identified by micro structural analysis, lead to a better comprehension of the DIC results.

2. Crystal plasticity model

The crystal plasticity model used in this work is based on an elastic-plastic formulation (Asaro, 1983; Healy et al., 2015): the kinematics of a crystal are a combination of dislocation slip, lattice rotation and elastic stretch; Fig. 1 illustrates the multiplicative decomposition used for the deformation gradient, originally proposed by Lee (1969):

\[F = F^e F^p = V^e R^e F^p = (I + \xi) R^e F^p \]

(1)

\(F^e \) is the elastic deformation gradient that accounts for stretching \((V^e)\) and lattice rotation \((R^e)\). The stretching can be written as \((I + \xi)\) where \(I\) is the unit matrix and \(\xi\) is a small variation; under high plastic strain condition, elastic strain can be considered small so that \(||\xi|| \ll 1\). \(F^p \) is the plastic deformation gradient that accounts for slip. In Fig. 1, \(b^{(s)} \) and \(n^{(s)} \) are, respectively, the unit vector in the slip direction and the unit normal vector to the slip plane of the \(s\)th system. Those are represented for every multiplicative step with the respective notation. From Eq. (1), the velocity gradient \(L \) in the current configuration is defined using the standard formulation as:

\[L = F F^{-1} = F^e F^p F^{-1} F^e \]

(2)

\(\hat{L} = \hat{F} F F^{-1} \) is defined as a constitutive tensor, which represents the plastic velocity gradient with respect to the intermediate configuration. Expressing \(L = D + W \) (Roters et al., 2010) as the sum of the skew \(W = 1/2(L - L^T) \) and the symmetric \(D = 1/2(L + L^T) \) components. Combining Eqs. (1) and (2), the following relations can be derived:

\[D = \xi + \hat{D}^p + \hat{\xi} \hat{W}^p - \hat{W}^p \hat{\xi} - \frac{1}{2} (\hat{\xi} \hat{\xi} + \hat{\xi} \hat{\xi}) \]

(3)

\[W = \hat{W}^p + \xi \hat{D}^p - \hat{\xi} \hat{D}^p - \frac{1}{2} (\hat{\xi} \hat{\xi} - \hat{\xi} \hat{\xi}) \]

(4)

\[\hat{D}^p = R^e \hat{D}^p R^e \]

(5)

\(\hat{D}^p \) and \(\hat{W}^p \) can be obtained from the plastic velocity gradient. Considering a single crystal and assuming that all the plastic strain is correlated to the slip on slip planes, \(\hat{L} \) can be expressed as an additive decomposition of plastic shear deformation in a lattice frame (Healy et al., 2015):

\[\hat{L} = \sum_{s=1}^{n_{slip}} \hat{\gamma}^{(s)} (\hat{b}^{(s)} \otimes \hat{n}^{(s)}) \]

(6)

where \(\hat{b}^{(s)} \) and \(\hat{n}^{(s)} \) are related to the intermediate configuration and \(\hat{\gamma}^{(s)} \) is the slip rate along each slip system. \(\hat{L} \) can be decomposed into its skew and symmetric components:

\[\hat{D}^p = \sum_{s=1}^{n_{slip}} \hat{\gamma}^{(s)} (\hat{b}^{(s)} \otimes \hat{n}^{(s)})_{sym} \]

(7)

\[(\hat{b}^{(s)} \otimes \hat{n}^{(s)})_{sym} = \frac{1}{2} (\hat{b}^{(s)} \otimes \hat{n}^{(s)} + \hat{n}^{(s)} \otimes \hat{b}^{(s)}) \]

(8)

Considering Eq. (3), under the hypothesis of small elastic strains, it is possible to introduce the relationship: \(C \hat{\xi} = \hat{\tau} \).
with C as the elastic stiffness tensor. Eq. (3), neglecting the effects of the quadratic terms in $\dot{\xi}$ and $\ddot{\xi}$, becomes $C D = \dot{T} + \tau \dot{W}^P + C \dot{D}^P - \tau \dot{W}^P \tau$, which can be used to determine the shear stress rate for the FEM integration:

$$\dot{T} = C_0 \left(D - \dot{B}^P \right) - \tau \dot{W}^P + \dot{W}^P \tau$$ \hspace{1cm} (9)

where C_0 is the stiffness matrix in the reference configuration (Fig. 1).

The slip rate is taken as a power law on a reference strain rate, the resolved shear stress and slip system strength. In the considered model the slip system hardening is isotropic; all slip systems have the same strength. The relation for the slip rate is:

$$\dot{\gamma}^{(s)} = \frac{\dot{\gamma}^{0}_{\tau}}{\tau} \left(\frac{\tau^{(s)}}{\tau} \right)^{n-1} \tau^{(s)}$$ \hspace{1cm} (10)

with $\dot{\gamma}^{0}_{\tau}$ as the reference slip rate, τ as the slip system strength and $\tau^{(s)}$ as the resolved shear stress on the slip system s. In Eq. (10) a relationship for the slip system strength is still missing. A constitutive model to describe it has to be defined. The model used to describe the material hardening is a physically based one; it relies on dislocation density to describe plastic deformations (Roters et al., 2010).

The Mechanical Threshold Stress (MTS) model (Healy et al., 2015; Kok et al., 2002b) is an isotropic scalar model that predicts flow stress as a function of strain rate, temperature and current state. It has been used successfully in the analysis of various materials (Banerjee, 2007; Follansbee, 2014; Goto et al., 2000). The mechanical threshold, τ_{MTS}, is defined as the flow shear stress at 0K and is separated in an athermal component $\dot{\tau}_a$ and thermal components $\dot{\tau}_t$:

$$\tau(T, \dot{\varepsilon}_p) = \tau_{MTS} = \dot{\tau}_a + \sum_{i=1}^{m_i} \dot{\tau}_i$$ \hspace{1cm} (11)

$\dot{\tau}_a$ characterizes the rate-independent interaction with thermal barriers; $\dot{\tau}_i$ characterizes the interaction of dislocations with obstacles where strain rate and thermal activation assist to overcome the obstacles (Follansbee and Kocks, 1988); $i = 1 : m_i$ identifies the number of thermal components to be used for the model. The flow stress for all the slip systems of a single crystal is expressed as:

$$\tau(T, \dot{\varepsilon}_p) = \tau_{MTS} = \dot{\tau}_a + \frac{\mu(T)}{\mu_0} \sum_{i=1}^{m_i} \tau_i(T, \dot{\varepsilon}_p) \dot{\tau}_i$$ \hspace{1cm} (12)

where μ/μ_0 accounts for the temperature dependent elastic properties of the material:

$$\mu(T) = \mu_0 - \frac{D_0}{\exp(T/\Theta) - 1}$$ \hspace{1cm} (13)

μ_0 is a reference value for the shear modulus and T_0 and D_0 are empirical constants.

It is possible to express the scaling factor S_i considering an Arrhenius type equation to describe interaction kinetics for short-range obstacles and a phenomenological relation for the free energy function of stress (Kocks, 1975; Kocks and Mecking, 2003):

$$\tau_i = S_i(T, \dot{\varepsilon}_p) \dot{\gamma}_i = \left[1 - \left(\frac{k T}{\varepsilon_0 i \mu \Theta} \ln \frac{\varepsilon_0 i}{\dot{\varepsilon}_p} \right)^{\frac{1}{n_i}} \right] \dot{\gamma}_i$$ \hspace{1cm} (14)

Where for the ith component the following parameters have to be identified: k is the Boltzmann constant; b is the magnitude of the Burgers vector; $\varepsilon_0 i$ is the normalized activation energy for dislocation to overcome the obstacles; $\dot{\varepsilon}_0 i, \varepsilon_0 i$ is a constant; p_i and q_i are statistical constants that characterize the shape of the obstacle profile; $\dot{\varepsilon}$ can be evaluated as $\dot{\varepsilon}_p = \sqrt{2D : D}$; $\dot{\tau}_i$ is a scalar representing the strength of the ith component.

To complete the work hardening model of Eq. (12), two terms of the type shown in Eq. (14) are considered, $m_i = 2$, one representing all intrinsic barrier to dislocation motion and one all work hardening. This general form reproduces the behavior shown in Fig. 2, considering the initial strength to dislocation motion (yielding) and the subsequent increasing due to dislocation hardening (Kok et al., 2002b). The terms in Eq. (12) have the form:

$$\tau(T, \dot{\varepsilon}_p) = \dot{\tau}_a + \tau_y(T, \dot{\varepsilon}_p) \frac{\mu}{\mu_0} + \tau(T, \dot{\varepsilon}_p) \frac{\mu}{\mu_0}$$ \hspace{1cm} (15)

Where $\dot{\tau}$ can be evaluated in its rate form, following the Voce law:

$$\dot{\tau} = \dot{\tau}_0 \left[1 - \frac{\tau}{\tau_p} \right]^{n_{slip}}$$ \hspace{1cm} (16)

τ_0 is the initial slope of the work hardening curve of Fig. 2: $\sum_{i=1}^{n_{slip}} \dot{\gamma}_{\tau}^{(s)}$ represents the plastic strain rate; $\dot{\tau}_0$ follows the law of Eq. (14) and represents the work hardening strength. In Eq. (15) the two terms that follows the Arrhenius type formulation are:

$$\tau_y = S_y(T, \dot{\varepsilon}_p) \dot{\tau}_y \quad \tau_y = S_y(T, \dot{\varepsilon}_p) \dot{\tau}_y$$ \hspace{1cm} (17)

In addition to the terms in Eq. (16) it is possible to also account for geometrically necessary dislocations and evaluate the Nye tensor (Nye, 1953) and the dislocation density:

$$\alpha = -\nabla \times F^{-1} \lambda^{(s)} = \sqrt{(\alpha n^{(s)}) : (\alpha n^{(s)})}$$ \hspace{1cm} (18)

It is possible to add a term in Eq. (16) (Acharya et al., 2003):

$$\dot{\tau}_y^{(s)} = \frac{k_b}{k_1} \dot{\varepsilon} \mu \lambda^{(s)}$$ \hspace{1cm} (19)

where $k_1 = 2 \delta_0 / \eta \mu b$ and k_0 is a parameter characterizing the stage IV of the work hardening (Kok et al., 2002a); so Eq. (16) can be modified adding a normalized term:

$$\dot{\tau} = \sum_{i=1}^{n_{slip}} \dot{\tau}_i \left[1 - \frac{\tau}{\tau_0} + \frac{\tau}{\tau_0} \right]^{n_{slip}}$$ \hspace{1cm} (20)

The $\dot{\tau}_y^{(s)}$ influences the work hardening plastic deformation (for low deformation its value is very small, so it practically affects only the final stage of the work hardening which has a nearly constant hardening slope).

3. Experiments

DIC was utilized for measuring global and local displacement for both the single crystal and the polycrystalline specimens.
The single crystal specimens were grown using the Bridgman technique in vacuum and orientations verified using EBSD: the three tested specimens were oriented with the [001], [011], [111] directions along the loading direction. Dog-bone tension specimen were electrical discharge machined (EDM) with a gage length of 9 mm, a width of 3 mm, and a thickness of approximately 1 mm. The specimens were mechanically polished to a mirror finish, and then the speckle pattern was airbrushed onto each specimen using black paint. Monotonic tension experiments were performed in a servo-hydraulic load frame capturing deformation images in-situ at a rate of 15 fps until failure. DIC images were captured with a field of view of 2.9 mm by 2.6 mm with a resolution of 2.2 μm/pixel. Correlation was performed with the following parameters: subset size 134 μm (61 px), step size of 11 μm (5 px), and a strain window of 5. A spatial resolution of 178 μm was used for determining the strain fields as defined in Reu (2015).

The polycrystalline specimen was larger to accommodate induction heating coils as experiment was performed at 700°C. The specimen dimension was length of 25 mm gage, width of 4 mm, and thickness of 2.38 mm. EBSD was performed on an area of 0.5 mm by 1 mm before the experiment. DIC images were captured ex-situ with an optical microscope to improve spatial resolution. Due to this, the experiment was performed as an interrupted monotonic tension experiment. Full details can be found in Pataký and Sehitoglu (2015). Images were captured at a resolution of 0.175 μm and correlations were performed with a subset size of 8.9 μm (51 px), step size of 0.875 μm (5 px) and a strain window of 5. This corresponded to a spatial resolution of 12,425 μm.

4. Crystal plasticity model parameters identification

To complete the analysis of the FE models, it is necessary for the material parameters to be identified; the analysis of single crystal experiments permits an iterative optimization. Then the identified parameters were used to reproduce one of the single crystal tests local behavior.

4.1. Material parameters identification

To simulate the single crystal experimental stress-strain curves, a cubic representative volume was adopted with load orientations along the [001], [011] and [111] directions. The simulation were processed considering a cubic geometry of $1 \times 1 \times 1$ mm and 1000 hexahedral linear elements. Each element was associated with the Euler angles corresponding to the specimen’s orientation. The load was applied as a displacement, like the experiment, on one face of the cube while the opposing face was displacement constraint along the load direction. For these models, only the overall behavior in stress-strain was analyzed. The comparison between the stress-strain curves of the three simulations and the experiments, Fig. 3, highlighted a good agreement and allowed for identification of several model parameters (Table 1), others were taken accordingly to the literature.

4.2. Analysis of single crystal specimen – [011] case

Since DIC did not show any particular strain accumulation in the [001] and [111] experiments, a second model was developed reproducing a single crystal plate with the load direction along the [011] crystallographic direction. This analysis was performed because the DIC results revealed strain accumulation along bands during the experiments. The geometry consists of a plate (3 \times 3 \times 1 mm), corresponding to the central section of a dog-bone specimen. It was modeled using a mesh with average element size of 40 μm. A displacement was applied along the face (3 \times 1 mm) normal to the [011] direction, and the opposing face was displacement constrained. The local behavior comparison for the [011] oriented specimen is shown in Fig. 4. To match the results, since the tensile curves have slight differences (Fig. 3b), the local behavior of the simulation was analyzed at an overall strain of 4.9%, the same as the DIC results. From the comparison, the model shows strain accumulation along 40.1° direction which is comparable with the 39° of the experiment.

5. Model validation and analyses on a polycrystalline aggregates

Having verified the parameters with the single crystal models, it was possible to analyze a polycrystalline aggregate. The simulation will emulate a specimen that undergoes a tensile test at 700°C and with the strain field measured via high resolution ex-situ (Pataký and Sehitoglu, 2015). To account for the test at 700°C some parameters were adjusted accordingly to the experimental stress-strain curve, the modified parameters are recorded in Table 2.

5.1. Finite element model of a polycrystalline specimen

The geometry of the FE model was defined by the DIC area of interest. Fig. 5 shows two micro structural maps from the EBSD analysis conducted on the specimen. The areas of Fig. 5a and c dimensions are respectively, 354 μm by 291 μm and 204 μm by

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Fitting/Literature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Young’s modulus</td>
<td>Fitted</td>
<td>218 GPa</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson’s ratio</td>
<td>Fitted</td>
<td>0.33</td>
</tr>
<tr>
<td>μ_b</td>
<td>Shear modulus</td>
<td>Fitted</td>
<td>89.5 GPa</td>
</tr>
<tr>
<td>n</td>
<td>Exponent of the slip rate</td>
<td>Fitted</td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>Burgers Vector</td>
<td>Literature (Gray III et al., 1999)</td>
<td>2.5 E – 7 mm</td>
</tr>
<tr>
<td>τ</td>
<td>MTS strength for intrinsic barrier (yield)</td>
<td>Literature (Healy et al., 2015)</td>
<td>0 MPa</td>
</tr>
<tr>
<td>\hat{g}_{α}</td>
<td>Normalized activation energy for intrinsic barriers</td>
<td>Literature (Gray III et al., 1999)</td>
<td>0.37</td>
</tr>
<tr>
<td>\hat{q}_{α}</td>
<td>Shape coefficient for intrinsic barriers</td>
<td>Literature (Kok et al., 2002b)</td>
<td>1.5</td>
</tr>
<tr>
<td>\hat{p}_{α}</td>
<td>Shape coefficient for intrinsic barriers</td>
<td>Literature (Kok et al., 2002b)</td>
<td>1.5</td>
</tr>
<tr>
<td>$\hat{\sigma}_{\alpha}$</td>
<td>Strain rate sensitivity for intrinsic barriers</td>
<td>Literature (Banerjee, 2007)</td>
<td>1.29×10^{-1}</td>
</tr>
<tr>
<td>\hat{f}_{α}</td>
<td>MTS strength for work hardening</td>
<td>Fitted</td>
<td>80 MPa</td>
</tr>
<tr>
<td>\hat{g}_{α}</td>
<td>Normalized activation energy for work hardening</td>
<td>Literature (Gray III et al., 1999)</td>
<td>1.6</td>
</tr>
<tr>
<td>\hat{q}_{α}</td>
<td>Shape coefficient for work hardening</td>
<td>Literature (Kok et al., 2002b)</td>
<td>0.667</td>
</tr>
<tr>
<td>\hat{p}_{α}</td>
<td>Shape coefficient for work hardening</td>
<td>Literature (Kok et al., 2002b)</td>
<td>1.2</td>
</tr>
<tr>
<td>$\hat{\sigma}_{\alpha}$</td>
<td>Strain rate sensitivity for work hardening</td>
<td>Literature (Banerjee, 2007)</td>
<td>1.67×10^{-1}</td>
</tr>
<tr>
<td>b_0</td>
<td>Initial hardening slope</td>
<td>Fitted</td>
<td>110 MPa</td>
</tr>
<tr>
<td>k_0</td>
<td>Geometric hardening parameter</td>
<td>Fitted</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1

Material parameters for crystal plasticity simulation of Haynes 230 single crystals.
229 μm. The grains’ geometries, orientations and the position of the carbides (white circles in Fig. 5a–c) were taken directly from the EBSD data (Pataky et al., 2013).

The meshing of the two models, shown in Fig. 5b and d, was done with linear hexahedral elements with an average size of 3.5 μm. Convergence tests were made, the proposed dimensions for the element granted no differences in terms of localizations and tensile curve with models where the mesh was refined further. The models were 5 elements thick (20 μm), thus the model can be considered in plane stress; the third direction was enough thin to not being considered a preferential one (like an extrusion), keeping the overall answer of the model close to isotropic. The two models consist of, respectively, about 46,000 and 23,000 elements. Fig. 5b and d also show a schematic of the loading and constraints. To simulate a tensile experiment, a displacement was applied to the nodes at the upper face, while a double symme-

Fig. 3. Single crystal results for tensile tests, analysis of the macroscopic behavior with comparison between simulations and experiments: a) [001]; b) [011]; c) [111].
5.2. Comparison with experimental results

The simulation was carried out on the two areas with 3 subsequent unloads resulting in residual strains of 1.22%, 1.59% and 2.51%. Fig. 6 shows a comparison between the stress-strain curves from the experiment, measured with DIC, and those extracted from the models. A good agreement between the two was demonstrated. Global strain and stresses were obtained from the models through a volume average over the elements values. This result pointed out that both models, despite the difference in surface extension, contained enough grains to be able to describe the experimental global behavior. For the following analysis the first unloading (1.22%) will be used as a reference of the comparison with the experimental results at the micro-scale.

Fig. 7a and d are the DIC strain fields from the two considered areas, highlighting strain accumulation along grains. The first attempt in approximating these results concerned the adoption of models without carbides. Fig. 7b and c are the results obtained. They showed agreement on several grain’s slip activation, but there were also many mismatches. The introduction of carbides, as identified in Fig. 5, modeled as purely elastic materials (with

![Image](https://via.placeholder.com/150)

Fig. 4. [011] single crystal strain field. Comparison between the strain field obtained with DIC analysis (a) and with FE simulation (b). The strain considered is the one along the loading direction.

![Image](https://via.placeholder.com/150)

Fig. 5. Polycrystalline model for the two extracted areas (a-b is the first inspected area, c-d is the second inspected area). a) and c) are the EBSD of the two inspected areas, with evidence of grains geometry, surface dimensions and carbides identification; b) and d) are the model of the areas, with highlights on loading direction and constraints.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Fitting/Literature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Young’s modulus</td>
<td>Fitted</td>
<td>201 GPa</td>
</tr>
<tr>
<td>μ_0</td>
<td>Shear modulus</td>
<td>Fitted</td>
<td>84 GPa</td>
</tr>
<tr>
<td>τ_y</td>
<td>MTS strength for intrinsic barrier (yield)</td>
<td>Fitted</td>
<td>128 MPa</td>
</tr>
<tr>
<td>τ_h</td>
<td>MTS strength for work hardening</td>
<td>Fitted</td>
<td>40 MPa</td>
</tr>
<tr>
<td>Δh</td>
<td>Initial hardening slope</td>
<td>Fitted</td>
<td>225 MPa</td>
</tr>
</tbody>
</table>

Table 2. Material parameters for crystal plasticity simulation of Haynes 230 polycrystalline specimen.
a high elastic modulus (Groover, 2007), had influence on the local behavior, while the stress-strain curves were consistent with those in Fig. 6. The local strain intensification, due to the carbides, reported in Fig. 7c and f, advanced the approximation of the experiment. Fig. 8 shows details of the strain field modification due to carbides presence, considering only the numerical results; the comparison is between the central portions of the models reproducing Area 1, Fig. 8a has no carbides and Fig. 8b has the carbides (the carbide position is shown in the picture).

Fig. 9 shows the strain value distribution histograms of the model compared to the DIC. For consistency, the number of strain values sampled with DIC and the FE model had to be the same. For the first area, the DIC showed a majority of values around the average while the simulation showed a plateau. The second simulation instead showed a trend similar to the experiment, despite having a difference in 0.2% in the average strain. The difference can be associated to the fact that the model was loaded to reproduce the global behavior of the specimen, measured over the entire DIC area of interest in Pataky and Sehitoglu (2015), while locally the DIC in the second surface area registered a lower mean cumulated strain.

A section of the second model was further investigated with a line scan. Fig. 10a shows the comparison between 3 datasets: the experiment, the simulation without carbides and the simulation with carbides. It can be noted that the three curves were similar in terms of trends and magnitudes. The trends were well captured by the first simulation, considering the peaks and valleys, and improved upon by the introduction of the inclusions. In the second model, the slip traces were identified for two grains (Engler and Randle, 2010; Abuzaied et al., 2012); activated slip systems were identified by detecting the highest strain accumulation orientations. Considering the stress field at the maximum peak of the simulation stress-strain curve, before the unloading, it was possible to evaluate the local shear stress along the identified traces. These results were then compared with the value of the externally applied resolved shear stresses, Fig. 10b, obtained from the Schmid law (Schmid and Boas, 1950):

$$\tau_{remote} = m \cdot \sigma_{remote}$$

where this shear stress is evaluated from the remote applied stress multiplied by the Schmid factor of the grain. This value is usually considered constant in the application of energy models for crack propagation.

Fig. 6. Polycrystalline model: comparison between the stress-strain curves obtained with the experimental procedure and the FE analysis of area 1 and area 2 (the two simulations overcome each other).

Fig. 7. Polycrystalline results for the two extracted areas, comparison of the strain fields between FE models and experiments. First area: a) DIC results; b) simulation without carbides; c) simulation with carbides. Second area: d) DIC results; e) simulation without carbides; f) simulation with carbides.

Fig. 8. Highlight of the comparison between the strain fields (a) without carbides and (b) with carbides.
nucleation (Sangid et al., 2011) and Fig. 10b shows that the constant values coming from the Schmid law and the local shear stress are of the same order.

In addition to the strain field, used for the comparison with the DIC, FE models allow for determination through the constitutive equations of the stress fields. Fig. 11 shows the stresses along the loading direction for the two analyzed model. Shown are the stress field at the maximum applied stress and after the unload, where the residual stresses can be estimated.

Since the model provides the Nye tensor components as an output (Healy et al., 2015), it was possible to determine the necessary dislocation density map through the relationship:

\[\rho b = \|\alpha\| = \sqrt{\alpha \cdot \alpha} \] \hspace{1cm} (22)

This quantity, in Fig. 12, indicates the regions of high plastic strain incompatibility, where large densities of necessary dislocations developed to maintain the compatibility throughout the model.

6. Conclusions

Modeling results, using the Warp3D CP model, allowed for the description and the study of how the localizations of strains and stresses act on local scale level. Moreover, considering the global behavior, there is a good approximation of the stress-strain curves for both single crystal and polycrystalline specimens. Two models were created assembling grains with different sizes and orientations. The interaction of those grains, each one can be considered locally as an anisotropic system, was able to reproduce the global behavior of a specimen that on the macro-scale can be seen as homogenous and isotropic. This result was possible since the models consisted of enough grains with different orientations to create a polycrystalline aggregate.

Finally the comparison of the strain accumulation, on the local scale, showed a good agreement in terms of active grains between the model and the experiment. The introduction of carbides improved the description of the residual strain field, showing that they have a significant role inside the material.

The shear stresses along the slip traces, obtained with the model, showed a good agreement with the approximation of the Schmid law, which considers the external shear stress evaluated with Eq. (21) as constant.

Acknowledgments

Partial support was made available from Nyquist endowment at the University of Illinois at Urbana Champaign and from the

