Polycrystal Modeling of Precipitate Effects in Aluminum-Copper Alloys

Huseyin Sehitoglu, Tracy J. Foglesong ², Hans J. Maier ³

University of Illinois at Urbana-Champaign, USA,
² Exxon Mobil, USA,
³ Universität-GH Paderborn, Germany

Collaborations: A. Beaudoin, C. Tome, Y. Chumlyakov

Motivation

• Develop an accurate and physically-based model that can describe the mechanical behavior of a precipitation-hardened alloy over a range of heat treatments.
Aluminum

- Dislocation-dislocation interactions
- Flow stress exhibits a linear relationship with dislocation cell size. (Tabata, ‘73, ‘78, ‘82)
- Stage 1 - easy glide
 - At most 4 - 5 % shear strain
 - More pronounced for single slip orientations
- Stage 2 - linear hardening
 - Not well-defined at room temperature
 - More defined when T < room temperature
- Stage 3 - parabolic hardening
 - Observed at room temperature
 - Becomes more prominent as temperature increases
Aluminum-Copper Alloys

- Precipitate-dislocation interactions
 - Anisotropy on plastic flow behavior (Hosford & Zeislfot ‘72, Bate et al. ‘81, Barlat & Liu ‘98, Choi & Barlat ‘99)
 - Bauschinger effect (Abel & Ham ‘66, Moan & Embury ‘79, Wilson ‘65)
- Coherent particles - GP zones and θ" (Price and Kelly ‘64)
 - Higher yield stress than Al
 - Shearing of particles
 - Comparable work hardening rates and deformation to Al
- Semi-coherent - θ' (P & K ‘64, Russell & Ashby ‘70)
 - High yield stress and high work hardening rates
- Incoherent particles - θ (P & K ‘64, R & A ‘70)
 - Low initial yield stress
 - Highest rates of work hardening
Precipitate Development

Sato & Takahashi, 1983
Precipitate Induced Anisotropy

• Amount of anisotropy is dependent upon:
 – Aging treatment
 – Orientation of precipitates
 – Morphology of precipitates

• Solutionized and overaged structures have little influence.
• Peak-aged treatment large anisotropy effect.
• Soft orientations are strengthened more by θ' precipitates.
 – Correlates with observations of the Bauschinger effect (Moan & Embury '79)

Hosford and Zeisloft '72, Bate et al. '81, Barlat and Liu '98, Choi and Barlat '99
Polycrystal Plasticity

- Properties of polycrystalline aggregate treated as averages over all of the constituent grains.
 - Model the material at the single crystal level

- Different from macroscopic theories of plasticity
 - Does not consider the individual grains, sample treated as a whole

- Advantages
 - More physically-based approach to material modeling
 - Describe effects of initial texture and grain morphology
 - Predict texture changes during deformation
Modeling of Precipitate Effects

• Model precipitate-induced anisotropy of plastic flow

• Proposed methods for modeling aged material
 – Plastic inclusion - precipitates deform and rotate to maintain compatibility with the matrix (Hosford & Zeisloft, ‘72)
 – Elastic inclusion - precipitates considered as non-deforming particles (Bate et al., ‘81)
 – Combined isotropic-kinematic hardening law, based on elastic inclusion hypothesis (Barlat & Liu, ‘98)
 – ***Barlat equation***
 – Modify hardening matrix to include dislocation-precipitate interactions (Schmitt et al., ‘97)
Elastic Inclusion
(Bate et al., ‘81)

- Precipitates considered as non-deforming particles.
- Plastic properties of precipitates not involved as the dislocation bypass the precipitates
- Anisotropy arises from the long-range back stress built up during deformation
- \(\| \gamma \| \) dependent upon shape and orientation of precipitates

\[
\sigma = M \tau_m (1 - f) + 2\mu f \| \gamma \| \varepsilon^p
\]

matrix contribution precipitate contribution
Plastic Inclusion
(Hosford & Zeisloft, ‘72)

- Precipitates deform and rotate to maintain compatibility with the matrix
- Anisotropy arises from the relaxation of shear strains

\[\sigma = M\tau_m (1 - f) + f\vec{\sigma}_{ppt}\vec{N} \]

- matrix contribution
- precipitate contribution
Limitations of Current Models

- Incorporating precipitate effects partially addressed
 - focus on only one aging treatment

- No incorporation of microstructural length scales

- Lack of physically-based hardening laws

- Limited incorporation into polycrystal models

- Few direct comparisons with experimental stress-strain results
Experimental Details

• Materials used:
 – Pure Al
 – Binary Al-Cu alloy with different aging treatments

• Compression tests
 – Single crystal and polycrystals
 – Different orientations for single crystals

• Transmission electron microscopy (TEM)
 – Investigate different deformation mechanisms, dislocation interactions, and evaluate precipitate spacing

• X-Ray Diffraction
 – Texture measurements
Orientations and Heat Treatments

- Single crystal orientations in the stereographic triangle

- Heat treatments used for single and polycrystals

<table>
<thead>
<tr>
<th>Aging Treatment</th>
<th>Single Crystal</th>
<th>Polycrystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Aging</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>190C, 3 hours</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>190C, 10 hours</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>190C, 24 hours</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>260C, 3 hours</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>260C, 5 hours</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>260C, 24 hours</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
TEM of Pure Aluminum

Subgrains

Subgrain boundary
TEM of Al-Cu, No Aging & 190°C 3hrs

No Aging

190°C, 3hrs
TEM of Al-Cu, 190°C 10hrs & 24 hrs

190°C, 10hrs

190°C, 24hrs
TEM of Al-Cu, 260°C 3hrs
TEM of Al-Cu, 260°C 24hrs
Summary of TEM Results

- Dislocations form subgrains in pure aluminum
- Small, incoherent precipitates present for all heat treatments
 - very little impact on stress-strain behavior, not homogeneously distributed
- Presence of coherent GP zones
 - no artificial aging
- Well-developed θ' precipitates
 - $190^\circ C$ for 10 hrs & 24 hrs
 - $260^\circ C$ for 3 hrs, 5 hrs, & 24 hrs
- Dislocation networks develop in channels between the θ' precipitates.
Precipitate-Induced Anisotropy

No Aging

Aged at 190°C for 24 hours

260°C, 24hrs - Experiment

Strain, (%) vs. Stress (MPa)
The Role of Aging on Strain Hardening Behavior
VPSC Polycrystal Model*

• Develop constitutive equations to relate stress and strain rate.
 – Single crystal and polycrystal level

• Couple constitutive laws via Eshelby’s equivalent inclusion method.
 – Interaction equation

• Utilize self-consistent method to solve for compliances.

* Lebensohn and Tomé, ‘93
Self-Consistent Formulation

• To derive interaction equation, assumed that visco-plastic moduli are known.
• HEM describes average behavior of polycrystal aggregate.

• Relationship between single crystal and polycrystal compliances.

where
Execution of VPSC Polycrystal Model

• Iterative procedure to determine:
 – Stress in each grain
 – Grain’s compliance tensor
 – Polycrystal compliance tensor

• Incremental deformation by imposing during Δt.

• Convergence is achieved when self-consistency is met.

\[
\left| \sigma^{(n)} - \Sigma \right| < \text{error}
\]

\[
\left| \sigma^{(n)} - \sigma^{(n-1)} \right| < \text{error}
\]

• Final step: calculate reorientation of grain due to slip.
Hardening with Precipitates

- Start with dislocation evolution equation

\[\dot{\rho} = \sum_k \left[\frac{K_o}{db} + k_1 \sqrt{\rho} - k_2 \rho \right] f_k \]

Geometric storage term due to boundaries / obstacles
Dynamic recovery of dislocations
Statistical storage of dislocations

- Combine with the Bailey-Hirsch relationship for flow stress.

\[\tau = \tau_o + \alpha \mu b \sqrt{\rho} \]
Proposed Hardening Law

- Single crystal formulation - one precipitate type

\[\dot{\tau} = \left[\frac{K_o \alpha^2 \mu^2 b}{2(\tau - \tau_o)} d \right] + \theta_o \left(\frac{\tau_s - \tau}{\tau_s - \tau_o} \right) \sum_k \dot{\gamma}^k \]

- Polycrystal formulation
 - More than one type of precipitate
 - Incorporate grain size length scale

\[\dot{\tau} = \left[\frac{\alpha^2 \mu^2 b}{2(\tau - \tau_o)} \left(\frac{K_{01}}{d_1} + \frac{K_{02}}{d_2} + \frac{K_{03}}{d_3} \right) \right] + \theta_o \left(\frac{\tau_s - \tau}{\tau_s - \tau_o} \right) \sum_k \dot{\gamma}^k \]
Incorporation of Precipitate-Induced Anisotropy

\[\dot{\tau} = \left[\frac{\alpha^2 \mu^2 b}{2(\tau - \tau_o)} \left(W \frac{K_{01}}{d_1} + \frac{K_{02}}{d_2} \right) + \theta o \left(\frac{\tau_s - \tau}{\tau_s - \tau_o} \right) \right] \sum_k |\gamma^k| \]

Anisotropy weighting factor
Total Weighting Factors

\[W_{pt} = \frac{1}{3}(W_{p1} + W_{p2} + W_{p3}) \]
\[W_{et} = \frac{1}{3}(W_{e1} + W_{e2} + W_{e3}) \]

<table>
<thead>
<tr>
<th>Compression Axis Direction</th>
<th>(W_{\text{plastic}})</th>
<th>(W_{\text{elastic}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>[111]</td>
<td>0.5774</td>
<td>0.3330</td>
</tr>
<tr>
<td>[123]</td>
<td>0.6900</td>
<td>0.4583</td>
</tr>
<tr>
<td>[117]</td>
<td>0.9611</td>
<td>0.7762</td>
</tr>
<tr>
<td>[112]</td>
<td>0.7016</td>
<td>0.4583</td>
</tr>
<tr>
<td>[100]</td>
<td>1.0000</td>
<td>0.8330</td>
</tr>
<tr>
<td>Polycrystal</td>
<td>0.7711</td>
<td>0.4688</td>
</tr>
</tbody>
</table>

(100) plane
Experiment and VPSC Model Comparison
Pure Aluminum Room Temperature Compression

- Solid line - experiment
- Dashed line - simulation

Polycrystal

Strain, (%)
Model Simulations

Al-4% Cu No Aging

- Solid line: Experiment
- Dashed line: Simulation

Al-4% Cu Aged at 190ºC for 3 hrs

- Solid line: Experiment
- Dashed line: Simulation
Modeling Summary

• Precipitate-induced anisotropy described accurately by both elastic and plastic inclusion weighting factors
 – elastic inclusion more physically accurate
• Hardening parameters determined from single crystal experiments resulted in accurate prediction of polycrystalline results.

• Physically-based hardening law developed
 – incorporated microstructural length scales
 – applicable over a range of heat treatments